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Abstract

The motions of a single and two lines of neutrally buoyant circular cylinders in ¯uid between ¯at
parallel walls are numerically investigated over the range of the Reynolds number of 12 < Re< 96, the
ratio of the diameter of the cylinder Ds to the channel width D of 0:25RDs=DR0:5, and the ratio of the
streamwise spacing of the cylinders L to the channel width of 0:75RL=DR2: The lattice Boltzmann
method is used for computations of the ¯uid phase and the cylinders are moved according to Newton's
law of motion. The SegreÂ ±Silberberg e�ect is found for both a single and two lines of cylinders. It is
also found that for two lines of cylinders with Ds=D � 0:25 and L=D � 1, the equilibrium positions of
the two lines are arranged to be staggered with respect to each other in the ¯ow direction. The e�ects of
the Reynolds number Re, Ds=D, and L=D on the equilibrium position of the lines of cylinders and on
the friction factor of the cylinder±¯uid mixture are presented and discussed. 7 2000 Elsevier Science
Ltd. All rights reserved.

1. Introduction

The problem of the particle motion in shear ¯ows is important not only in many engineering
®elds such as the handling of a ¯uid±solid mixture in a slurry, colloid, and ¯uidized bed, but
also in biological ®elds in connection with blood ¯ow in capillaries. Therefore, such problems
have been investigated experimentally and theoretically by many researchers.
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A particularly important experimental study on the motion of particles in a pipe ¯ow was
performed by SegreÂ and Silberberg (1961). They discovered that neutrally buoyant particles in
a pipe ¯ow migrate laterally away both from the wall and the centerline and reach a certain
equilibrium lateral position. Karnis et al. (1966) veri®ed the same phenomenon and observed
that particles stabilize midway between the centerline and the wall, closer to the wall for larger
¯ow rates and closer to the center for larger particles. They deduced that these phenomena are
due to an inertia e�ect of the ¯ow. Tachibana (1973) found experimentally that the lateral
migration of spheres in pipe ¯ows depends mainly on the ratio of the sphere diameter to the
pipe diameter and that the phenomenon is clearly observed if this ratio exceeds about 0.2.
On the theoretical side, perturbation theories have been used to understand the lateral

migration. Sa�man (1965) obtained the lift on a spherical particle in a shear ¯ow in an
unbounded domain. Ho and Leal (1974) and Vasseur and Cox (1976) investigated the lateral
migration of a spherical particle in both a Couette ¯ow and a plane Poiseuille ¯ow bounded by
two in®nite plane walls. These theories for the bounded domain are valid for small channel
Reynolds numbers. Schonberg and Hinch (1989) extended Sa�man's analysis to a small sphere
in a plane Poiseuille ¯ow for the channel Reynolds number of order unity, and McLaughlin
(1993) studied the lift on a small sphere in wall-bounded linear shear ¯ows for small particle
Reynolds numbers. For these theories to be valid, the dimensionless radius of the sphere must
be small. In general, however, these perturbation theories can represent the motion of particles
only subject to the severe restrictions that the Reynolds numbers be small and/or the particles
be small, compared with the channel width.
On the other hand, numerical simulations have been used for the problem of particle motion

in shear ¯ows. Direct numerical simulations require no restrictions such as small Reynolds
numbers, small particles, and so on. Thus, it is possible to compute the motion of particles not
only around the center of a channel but also near a wall at various Reynolds numbers. Feng et
al. (1994) investigated the motion of a circular particle in a Couette and Poiseuille ¯ow using a
®nite-element method and obtained qualitative agreement with the results of perturbation
theories and of experiments. Nirschl et al. (1995) carried out three-dimensional calculations of
¯ows around a spherical particle between two moving walls using a ®nite-volume method with
a Chimera grid scheme, but they were not concerned about the motion of the particle.
Considering particle transport in pipes and blood ¯ow in capillary vessels (in which the red

blood cells represent particles), there exists a need to investigate the motion of the lines of
particles and the pressure drop in ¯ows of a ¯uid±solid mixture in pipes. Wang and Skalak
(1969) investigated analytically a Stokes ¯ow through a pipe of a liquid containing spherical
particles located on the axis of the pipe and equally spaced. Chen and Skalak (1970) applied
the same method for a line of spheroidal particles. They obtained the interaction between
particles and the pressure drop in the pipe. In their analysis, however, the lateral motion of
particles is not considered and the Reynolds number is assumed to be so low that inertia terms
may be neglected.
In this paper, we use the lattice Boltzmann method (McNamara and Zanetti, 1988; Higuera

and Jimenez, 1989; Chen et al., 1991; Qian et al., 1992) to investigate the ¯ow containing the
lines of neutrally buoyant circular cylinders between ¯at-parallel walls. The lattice Boltzmann
method has been used for simulating solid±¯uid suspensions of spheres by Ladd (1994, 1996,
1997), cylinders by Aidun and Lu (1995), and non-spherical particles by Qi (1997, 1999) and by
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Aidun et al. (1998). In particular, Ladd (1996, 1997) carried out dynamic simulations of bulk
sedimentation using up to 32,000 spheres. However, the interactions between solid particles
and walls and the motion of solid particles near walls have not been thoroughly examined.
Here we investigate the equilibrium position of circular cylinders and examine the friction
factor of a cylinder±¯uid mixture ¯ow between parallel walls at various Reynolds numbers, for
various ratios of the diameter of the cylinder to the channel width, and for various ratios of
the streamwise spacing of the cylinders to the channel width.

2. Numerical method

We use the lattice Boltzmann method for the computation of the ¯uid phase and Newton's
law of motion for the computation of the motion of the lines of cylinders. At each time step
the force and torque acting on each cylinder are obtained from the ¯ow ®eld stress tensor and
then the motion of the cylinder is explicitly updated.

2.1. Lattice Boltzmann method

In the lattice Boltzmann method, a modeled gas, which is composed of identical particles
whose velocities are restricted to a ®nite set of vectors, is considered. Hereafter, we use non-
dimensional variables de®ned by a characteristic length H, a characteristic particle speed c, a
characteristic time scale t0 � H=U where U is a characteristic ¯ow speed, and a reference
density r0 (see Inamuro et al., 1997). The characteristic particle speed c is related to the
internal energy e by e � 1

3c
2 (Inamuro et al., 1997), and c is chosen by using this relation in the

following where the internal energy is assumed to be constant. The nine-velocity model
(Nadiga, 1992; Qian et al., 1992) is used in the following calculations. The model has the
velocity vectors, c1 � 0, ci � �cos�p�iÿ 2�=2�, sin�p�iÿ 2�=2�� for i = 2, 3, 4, 5, and ci ����
2
p �cos�p�iÿ 11

2 �=2�, sin�p�iÿ 11
2 �=2�� for i = 6, 7, 8, 9, as shown in Fig. 1. The evolution of the

particle distribution function fi�x, t� with the velocity ci at the point x and time t is computed
by the following equations:

Fig. 1. The nine-velocity model.
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fi�x� ciDx, t� Dt� ÿ fi�x, t� � ÿ1t
�
fi�x, t� ÿ f

eq
i �x, t�

�
for i � 1, 2, . . . ,9, �1�

where Dx is a lattice spacing, Dt is a time step, f
eq
i is an equilibrium distribution function, and

t is a single relaxation time. It is noted that Dt is chosen so that the particles travel one lattice
spacing during the time step. A suitable equilibrium distribution function of the model is given
by Qian et al. (1992)

f
eq
i � Eir

�
1� 3ci � u� 9

2
�ci � u�2ÿ3

2
u � u

�
, �2�

where E1 � 4=9, E2 � E3 � E4 � E5 � 1=9, and E6 � E7 � E8 � E9 � 1=36: The ¯uid density r
and the ¯uid velocity u are calculated in terms of the particle distribution function by

r �
X9
i�1

fi, �3�

u � 1

r

X9
i�1

fici, �4�

and the pressure p is related to the density r by

p � 1

3
r: �5�

We can also calculate the stress tensor sss�fsabg �a, b � x, y� as follows (see Appendix A):

sab � ÿ 1

2t
p dab ÿ

tÿ 1
2

t

X9
i�1

fi�cia ÿ ua��cib ÿ ub�, �6�

where dab is the Kronecker delta. The kinematic viscosity n is given by

n � 1

3

�
tÿ 1

2

�
Dx: �7�

The dimensional forms of the above-mentioned variables are as follows: cci is the particle
velocity, Hx is the coordinates, t0t is the time, r0 fi is the particle distribution function, r0r is
the density, cu is the ¯uid velocity, r0c

2p is the pressure, r0c
2sss is the stress tensor, and cHn is

the kinematic viscosity.
It was found by Inamuro et al. (1997) that using Eqs. (1)±(5) we can obtain the ¯ow

velocities and the pressure gradient for incompressible ¯ow with relative errors of O�e 0 2� where
e 0 is a modi®ed Knudsen number which is of the same order as the lattice spacing Dx and is
related to the relaxation time t: That is, when Dx, t, and the Reynolds number are given, the
errors are proportional to the square of the Mach number U/c. In other words, the lattice
Boltzmann method has compressibility intrinsically, and the errors are caused by the
compressibility e�ect. It is also noted that the pressure gradient should be of the same order as
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�U=c�2 in order to ensure incompressible ¯ow (Inamuro et al., 1997). Otherwise, we have high
Mach numbers, and the compressibility e�ect becomes large. In a preliminary calculation of
plane Poiseuille ¯ow with a large pressure drop (Mach number is 0.3), we have an error of
about 15% compared with the exact solution of incompressible ¯ow.
The domain of computation is divided into a square lattice grid, and the cylinders are

embedded in the grid. The boundary nodes representing the cylinder are made up of lattice
grids surrounding the cylinder as shown in Fig. 2. The no-slip boundary condition (see
Appendix B), which is based on the di�use re¯ection in the kinetic theory of gases, is applied
at the boundary nodes. In this condition, the particle leaving a wall is assumed to have an
equilibrium distribution function with a counter slip velocity in order to cancel a slip velocity
near the wall which is induced by the bounce-back boundary condition. By forcing the
assumption only on leaving particles and by taking the counter slip velocity into account, we
can treat a non-equilibrium state of no-slip condition at walls. The accuracy of the condition
for fundamental problems is illustrated in Inamuro et al. (1995), and the accuracy for the
present problem is given in Section 2.4. At each computation step the cylinder moves across
the ®xed grid and thus the boundary nodes representing the cylinder are changed with time.

2.2. Motion of cylinder

Let Ds and rs be the diameter and the density of the cylinder, respectively. The translational
velocity us and the angular velocity O of the cylinder with the mass M � rs�pD2

s =4� and the
moment of inertia I �M�D2

s =8� are described by Newton's law as follows:

M
dus

dt
� F, �8�

I
dO
dt
� T, �9�

where F and T are the force and the torque acting on the cylinder, respectively. In previous
lattice Boltzmann methods (Ladd, 1994; Aidun and Lu, 1995; Qi, 1997, 1999; Aidun et al.,

Fig. 2. A closed surface S around a cylinder with a diameter Ds and the unit outward normal vector n on S. A
block of lattice grids surrounding the cylinder represents boundary nodes used in computations.
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1998), the force and the torque are usually calculated by applying modi®ed bounce-back
conditions to the particle distribution functions. These conditions are somewhat heuristic,
although they work well. From a hydrodynamic point of view, it is straightforward to use the
stress tensor for calculating the force and the torque. Here the force and the torque acting on
the cylinder are calculated from the stress tensor given by Eq. (6). However, the calculated
results of the stress tensor on the cylinder are not smooth, since the circular surface is
represented by the square lattice grids. Thus, we use a closed surface S which is apart from the
cylinder as shown in Fig. 2 and calculate the force and torque by integrating stress tensor and
momentum ¯ux on that surface using the following equations:

F �
�
S

�
sss � nÿ ru

��uÿ us� � n�	dS, �10�

T �
�
S

r� �sss � nÿ ru
��uÿ us� � n�	 dS, �11�

where n is the unit outward normal vector on S and r is a vector from the center of the
cylinder to the point on S. In the above equations, an unsteady term is neglected because it is
found in preliminary calculations that the unsteady term is negligibly small. The integral in
Eqs. (10) and (11) is approximated by the quadrature of 400 points. The r, u, and sss on S are
calculated from the linearly interpolated values of fi at the point on S. To determine the
diameter of S, we calculated the force and torque by changing the value of the diameter of S
and found that by using the values between 1.16 and 1:32Ds for the diameter of S we obtain
almost the same force and torque. Hence, we choose the diameter of S to be 1:16Ds in the
following calculations. The ®rst-order Euler method with the same time step as Eq. (1) is used
for the computations of Eqs. (8) and (9).

2.3. Conditions of computation

A single line of neutrally buoyant cylinders in ¯uid between parallel walls is considered (see
Fig. 3). The distance between the two walls is D, and the inlet and outlet of the channel are a
length of L apart. The density of the cylinder is equal to that of the ¯uid �rs � r). The periodic
boundary condition with a constant pressure di�erence Dp (see Appendix B) is used at the inlet
and outlet of the channel. At t = 0, ¯uid velocity is set to be zero and the cylinders are
located at x = 0 and L with zero velocity. In the following calculations, we de®ne the
Reynolds number Re and the friction factor f as follows:

Re � �uD

n
, �12�

f � 1

2

D

L

Dp
1
2

�r �u2
, �13�

where �u and �r �� 1� are the time- and space-averaged velocity and density of the cylinder±¯uid
mixture at the inlet, respectively, after the cylinder reaches an equilibrium position. In the
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present calculations, when Dx, t, and Dp are given, �u is obtained by the calculations. The
Reynolds number is changed as follows. First, we choose Dx and a tentative �u (A small �u is
desirable, since errors are proportional to �u2: We choose �u10:04 in the following
calculations.). Then, we choose t so as to satisfy a speci®ed Reynolds number and choose Dp
so as to obtain a close value of the tentative �u:

2.4. Accuracy of the method

To examine the accuracy of the method, we calculated a ¯ow over a line of circular cylinders
placed at the middle of a straight channel. Aidun and Lu (1995) computed the same ¯ow using
both a ®nite-element method and the lattice Boltzmann method. We took the case where the
cylinder is ®xed and the channel walls move tangentially with a constant velocity uw: The
domain is divided into a 128� 128 lattice grid and the Reynolds number is Re � uwDs=n � 1;
these are the same conditions as used by Aidun and Lu (1995). The periodic boundary
condition with zero pressure gradient is used at the inlet and outlet of the channel. We
compare the results of the dimensionless force per unit area of the channel wall fw �
Fw=�ru2

wL� (where Fw is the force acting the wall and is calculated by using Eq. (6)) and that of
the cylinder surface fc � jFj=�pru2

wDs� (where F is calculated by Eq. (10)) with the results of
Aidun and Lu (1995) in Table 1. It is found that the present results agree with those of Aidun
and Lu (1995) within 1.3% for Ds � 60:8Dx which is nearly equal to Ds � 50Dx used in the
following calculations. In addition, we calculated the dimensionless forces fw and fc of a
moving line of cylinders with the radius 60:8Dx and the velocity us � uw between ®xed parallel

Fig. 3. The domain of computation for a single line of cylinders.The periodic boundary condition with a constant
pressure di�erence Dp is used at the inlet and outlet of the channel.
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walls. The results shown in the bottom row in Table 1 agree well with those of a ®xed single
line of cylinders between moving parallel walls.

3. Results and discussion

We apply the above numerical method for calculations of the ¯ow containing either a single
or two lines of neutrally buoyant circular cylinders between ¯at parallel walls. The
dimensionless parameters of the problem are the Reynolds number Re de®ned by Eq. (12), the
ratio of the cylinder diameter to the channel width Ds=D, and the ratio of the spacing of the
cylinders to the channel width L=D which is also related to the ratio of the occupied area of
the cylinder to the whole domain f � pD2

s =�4LD�: To test the in¯uence of the grid resolution,
we carried out preliminary computations of a single line of the cylinders at Re � 27:54 for
Ds=D � 0:25 and L=D � 1 using 100� 100, 200� 200, and 300� 300 lattice grids. From these
computations, it was found that the calculated results of equilibrium positions and friction
factors with the 200� 200 and 300� 300 lattice grids agree with each other to within 0.6%. In
the following computations, we use the 200� 200 lattice grid for the case of L=D � 1: The
conditions of computations and the calculated results are listed in Table 2. The computation
time for case No. 1 in Table 2 required about 20 min per 10,000 time steps on a single
processor of the SGI Origin 2000 workstation.

3.1. Motion of a single line of circular cylinders

First, we calculate the motion of a single line of circular cylinders with L=D � 1 and Ds=D �
0:25 at various Reynolds numbers. The lateral migration curves of the cylinders released at

Table 1
Comparison of the results by the present method with those by Aidun and Lu (1995) for the problem of a ¯ow over
a line of circular cylinders with a diameter Ds in a moving straight channel with a constant velocity uw: The domain

is divided into 128� 128 lattice grids. FEM and LBM are the results with a ®nite-element method and with a lattice
Boltzmann method by Aidun and Lu (1995), respectively. fw and fc are the dimensionless force per unit area of the
channel wall and that of the cylinder surface, respectively. Error is evaluated based on the result by FEM

Case Method t uw(us) fc Error (%) fw Error (%)

I FEM ± ÿ0.04 0.966 ± 0.137 ±
�Ds � 10:8Dx� LBM 1.796 ÿ0.04 1.022 5.8 0.132 ÿ3.6

Present 1.796 ÿ0.04 1.053 9.0 0.142 3.6
II FEM ± ÿ0.02 1.158 ± 0.316 ±

�Ds � 20:8Dx� LBM 1.748 ÿ0.02 1.229 6.1 0.313 ÿ0.9
Present 1.748 ÿ0.02 1.251 8.0 0.322 1.9

III FEM ± ÿ0.01 2.067 ± 1.543 ±

�Ds � 60:8Dx� LBM 2.324 ÿ0.01 2.054 ÿ0.6 1.532 ÿ0.7
Present 2.324 ÿ0.01 2.093 1.3 1.561 1.2
Presenta 2.324 (0.01) 2.094 1.562

a The results of a moving line of circular cylinders with the velocity us between ®xed parallel walls.
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di�erent initial positions between the centerline and the lower wall are shown in Fig. 4. It is
found from Fig. 4 that in spite of the initial positions, the cylinder migrates to the same
equilibrium position at yc=D � 0:2733, which is a little closer to the centerline than the
midpoint between the centerline and the lower wall. That is, the SegreÂ ±Silberberg e�ect is
found even for a line of circular cylinders between parallel walls. Fig. 5 shows the pro®les of
the ¯uid velocity in the x-direction ux at the relative positions �xÿ xc�=L � 0, 1=4, 1=2, and
3=4 �xc: the x position of the center of the cylinder) after the cylinder reaches the equilibrium
position. At �xÿ xc�=L � 1=2 the pro®le is almost equal to a parabolic curve. At �xÿ xc�=L �
1=4 and 3=4, both the pro®les almost coincide and are retarded by the in¯uence of the cylinder.
At x � x c, the velocity is maximum near the centerline, and the pro®le in the region between
the cylinder and the lower wall has a di�erent feature from those at the other positions,
presenting an upward convex curve. The pressure ®eld in the domain is shown in Fig. 6. The
pressure ®eld is similar to that of a circular particle in a Poiseuille ¯ow calculated by Feng et

Table 2
The conditions of each computation and the calculated results. Nos. 1±14 are lists for a single line of cylinders and

Nos. 15±19 are for two lines of cylinders. For the single line, the Reynolds number Re, the ratio of the cylinder
diameter to the channel width Ds=D, and the ratio of the occupied area of the cylinder to the whole domain
f � pD 2

s =�4LD� are changed in Nos. 1±6, in Nos. 7±11, and in Nos. 12±14, respectively. For the two lines, only the

Reynolds number is changed in Nos. 15±19. For us= �u, DsO=2 �u, and yc in Nos. 15±19, upper and lower numbers
correspond to cylinders B and A, respectively, in Fig. 16

No. t Dp D=Dx L=Dx Ds/D f �u us= �u DsO=2 �u Re yc f/(12/Re )

1 2.45 1:763� 10ÿ3 200 200 0.25 0.04909 0.04137 1.129 ÿ0.1652 12.73 0.2745 1.093

2 1.4 8:167� 10ÿ4 200 200 0.25 0.04909 0.04131 1.123 ÿ0.1655 27.54 0.2733 1.098
3 1.07 5:133� 10ÿ4 200 200 0.25 0.04909 0.04091 1.120 ÿ0.1643 43.07 0.2728 1.101
4 0.95 4:100� 10ÿ4 200 200 0.25 0.04909 0.04118 1.119 ÿ0.1632 54.91 0.2723 1.103
5 0.86 3:270� 10ÿ4 200 200 0.25 0.04909 0.04110 1.118 ÿ0.1615 68.50 0.2716 1.105

6 0.757 2:337� 10ÿ4 200 200 0.25 0.04909 0.04101 1.119 ÿ0.1573 95.74 0.2706 1.108
7 1.4 6:133� 10ÿ4 200 150 0.25 0.06545 0.04010 1.103 ÿ0.1708 26.73 0.2645 1.133
8 1.4 7:167� 10ÿ4 200 171 0.25 0.05741 0.04164 1.115 ÿ0.1675 27.76 0.2697 1.116

9 1.4 9:800� 10ÿ4 200 240 0.25 0.04091 0.04131 1.123 ÿ0.1621 27.96 0.2750 1.082
10 1.4 1:223� 10ÿ3 200 300 0.25 0.03273 0.04255 1.138 ÿ0.1590 28.37 0.2799 1.065
11 1.4 1:633� 10ÿ3 200 400 0.25 0.02454 0.04325 1.154 ÿ0.1557 28.83 0.2850 1.049

12 1.252 1:167� 10ÿ3 167 239 0.30 0.04919 0.04123 1.133 ÿ0.1788 27.47 0.2875 1.099
13 1.063 2:087� 10ÿ3 125 320 0.40 0.04909 0.04146 1.178 ÿ0.1855 27.64 0.3280 1.092
14 0.95 3:207� 10ÿ3 100 400 0.50 0.04909 0.04135 1.225 ÿ0.1554 27.57 0.3798 1.077

15 2.3 1:790� 10ÿ3 200 200 0.25 0.09817 0.04259 1.112 ÿ0.1675 14.20 0.2734 1.168
1.109 0.1675 0.7267

16 1.4 8:967� 10ÿ4 200 200 0.25 0.09817 0.04234 1.103 ÿ0.1672 28.23 0.2715 1.176
1.104 0.1674 0.7285

17 1.1 5:967� 10ÿ4 200 200 0.25 0.09817 0.04222 1.101 ÿ0.1660 42.22 0.2709 1.190
1.101 0.1662 0.7292

18 0.86 3:600� 10ÿ4 200 200 0.25 0.09817 0.04205 1.101 ÿ0.1621 70.08 0.2700 1.186

1.101 0.1622 0.7299
19 0.74 2:180� 10ÿ4 200 200 0.25 0.09817 0.03819 1.104 ÿ0.1580 95.47 0.2700 1.189

1.104 0.1581 0.7299
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al. (1994). It is seen that a high pressure region appears on the front lower surface and on the
rear upper surface of the cylinder, and a low pressure region appears on the rear lower surface
of the cylinder. It is noted that an opposite pressure gradient exists between the cylinder and
the lower wall. The opposite pressure gradient causes the velocity pro®le between the cylinder
and the lower wall at x � xc to be di�erent from those at other positions as explained in Fig. 5.
Fig. 7 shows lateral migration curves of the cylinder from the same initial position at the
di�erent Reynolds numbers Re = 12.73, 27.54, and 95.74. It is seen that the cylinder migrates
faster and reaches a point closer to the wall as the Reynolds number increases. Moreover, at
Re = 95.74, the cylinder overshoots and oscillates a little before reaching the equilibrium

Fig. 4. Lateral migrations from di�erent initial positions of a single line of cylinders at Re = 27.54 with
Ds=D � 0:25 and f � 0:04909:

Fig. 5. Velocity pro®les of a single line of cylinders at Re=27.54 with Ds=D � 0:25 and f � 0:04909:
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position, while at the lower Reynolds numbers the cylinder approaches the equilibrium position
monotonically. The equilibrium positions ys=D at various Reynolds numbers are shown in
Fig. 8. The equilibrium position moves to the wall as the Reynolds number increases. The
same feature of the equilibrium position against the Reynolds number is also found in the
computation of a cylinder between parallel walls by Feng et al. (1994) and in the experiment of

Fig. 6. Pressure distribution contours of a single line of cylinders at Re=27.54 with Ds=D � 0:25 and f � 0:04909:
p� � �pÿ �p�xÿx c�=L�1=2�= 12 �r �u 2 where �p�xÿx c�=L�1=2 is the space-averaged pressure at �xÿ x c�=L � 1=2:

Fig. 7. Lateral migrations of a single line of cylinders at di�erent Reynolds numbers.
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sphere particles in a pipe ¯ow by Karnis et al. (1966). We calculate the friction factor using
Eq. (13) after the cylinder reaches the equilibrium position. The ratio of the calculated friction
factor to that of ¯ow without cylinders �� 12=Re� is shown against various Reynolds numbers
in Fig. 9. The fact that the ratios are larger than unity is caused by a pressure excess needed to
carry the cylinder. It is found from Fig. 9 that the ratio of the friction factor increases slightly
as the Reynolds number increases. Fig. 10 shows the shear stress on the parallel walls. In the
®gure the shear stress is normalized by that of the Poiseuille ¯ow without cylinders at the same
Reynolds number. It is seen that on the lower wall the shear stress is smaller than that of the
Poiseuille ¯ow in the region under the cylinder, becomes larger in the region near the edge of
the cylinder, and decreases in the region far away from the cylinder. In contrast, on the upper
wall the shear stress is larger than that of the Poiseuille ¯ow in the region near the cylinder
and reaches that of the Poiseuille ¯ow in the region far away from the cylinder. Also, the shear
stress at Re = 95.74 becomes larger than that at Re = 12.73 on both the upper and lower
walls, and this corresponds to the results described in Fig. 9. Another interesting feature is that
the di�erence of the shear stress between Re = 95.74 and 12.73 becomes much larger on the
lower wall behind the cylinder probably due to the change of the wake behind the cylinder
caused by inertia e�ect. Thus, it is considered that the increase in the friction factor with the
Reynolds number arises mainly from the inertia e�ect of the ¯ow.
Next, we calculate the motion of a single line of cylinders with Ds=D � 0:25 at Re 1 27 with

various values of the spacing of the cylinders L=D: As L=D is changed, the ratio of the area

Fig. 8. Equilibrium position of the center of the cylinder yc versus Reynolds number Re for a single line of cylinders

with Ds=D � 0:25 and f � 0:04909:

Fig. 9. The ratio of the friction factor f to that of ¯ow without cylinders (=12/Re ) versus Reynolds number Re for
a single line of cylinders with Ds=D � 0:25 and f � 0:04909:
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Fig. 10. Shear stresses s on parallel walls for a single line of cylinders for di�erent Reynolds numbers with
Ds=D � 0:25 and f � 0:04909: The shear stress is normalized by that of the Poiseuille ¯ow without cylinders s0:
The shadow indicates the region where the cylinder exists. (a) On the upper wall; (b) on the lower wall.

Fig. 11. Equilibrium position of the center of the cylinder yc versus the ratio of the occupied area of the cylinder to
the whole domain f for a single line of cylinders with Ds=D � 0:25 and Re127:
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occupied by the cylinder to the whole domain, f � pD2
s =�4LD�, also changes. The other two

parameters are ®xed at Ds=D � 0:25 and Re127: Figs. 11 and 12 show the equilibrium
position and the ratio of the friction factors against f, respectively. It is found from these
®gures that the equilibrium position approaches the lower wall as f increases and that the
ratio of friction factors increases in proportion to f: This linear increase of the ratio of friction
factors is due to the dependence of the pressure excess on the number of cylinders in a unit
length of the channel.
Finally, we investigate the e�ect of Ds=D at Re127:5 and with f10:049: Figs. 13 and 14

show the equilibrium position and the ratio of the friction factors, respectively. The
equilibrium position approaches the center of the channel as the diameter of the cylinder
increases. A similar experimental ®nding for spherical particles in a pipe ¯ow was reported by
Karnis et al. (1966). It is noted that the ratio of the friction factors becomes smaller as Ds=D
increases. That is, the apparent viscosity of the cylinder±¯uid mixture decreases as Ds=D
increases in keeping f constant, which corresponds to the FaÊ hrñus±Lindqvist e�ect in blood
¯ow (FaÊ hrñus and Lindqvist, 1931) and the sigma phenomenon in ¯ow of suspensions (Scott
Blair, 1958). The shear stresses on the upper and lower walls for Ds=D � 0:25 and 0.5 are
shown in Fig. 15. In the ®gure, the dark and light shadows indicate the regions where the
cylinders of the diameter Ds=D � 0:25 and 0.5 exist, respectively. It is noted that since f is
kept constant, doubling Ds=D corresponds to halving Ds=L: The e�ect of the cylinder on the
shear stress is larger for Ds=D � 0:5 than for Ds=D � 0:25 on both walls. In addition, on the

Fig. 12. The ratio of the friction factor f to that of ¯ow without cylinders �� 12=Re� versus the ratio of the occupied
area of the cylinder to the whole domain f for a single line of cylinders with Ds=D � 0:25 and Re127:

Fig. 13. Equilibrium position of the center of the cylinder yc versus the ratio of the cylinder diameter to the channel
width Ds=D for a single line of cylinders at Re127:5 and with f10:049:

T. Inamuro et al. / International Journal of Multiphase Flow 26 (2000) 1981±20041994



Fig. 15. Shear stresses s on parallel walls for a single line of cylinders for di�erent Ds=D: The shear stress is

normalized by that of the Poiseuille ¯ow without cylinders s0: The dark and light shadows indicate the regions
where the cylinders of the diameter Ds=D � 0:25 and 0.5 exist, respectively. (a) On the upper wall; (b) on the lower
wall.

Fig. 14. The ratio of the friction factor f to that of ¯ow without cylinders �� 12=Re)versus the ratio of the cylinder
diameter to the channel width Ds=D for a single line of cylinders at Re127:5 and with f10:049:
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lower wall the shear stress near the cylinder becomes larger for Ds=D � 0:5 than for Ds=D �
0:25 because of the size e�ect of the cylinder. Also, the shear stress in the region between the
cylinders becomes smaller for Ds=D � 0:5 than for Ds=D � 0:25, since the spacing between the
cylinders is smaller for Ds=D � 0:25 than for Ds=D � 0:5: Integrating the shear stress in Fig. 15,
we obtain a smaller total viscous force on both the walls for Ds=D � 0:5 than for Ds=D � 0:25
as illustrated in Fig. 14. Thus, the decreasing apparent viscosity of the cylinder±¯uid mixture
for large Ds=D is due to the increase in the spacing between the cylinders that overcomes the
size e�ect of the cylinder.
It is interesting to note in Table 2 that the translational velocity of the cylinder, us, is larger

than the time- and space-averaged velocity of the cylinder±¯uid mixture, �u, for all cases. In
particular, it is clearly found that us= �u becomes larger as Ds=D increases. The similar
phenomenon has been also found in blood ¯ow (FaÊ hrñus, 1929).
To this point, we investigated the e�ects of the parameters Re, Ds=D, and f over relatively

small ranges. Yet there is also interest in the e�ects over much wider ranges of the parameters.
However, there are di�culties in obtaining such solutions. For example, for Re > 100 we have
not been able to obtain a steady solution for both the equilibrium position and the friction
factor. It is possible that for high Reynolds numbers the cylinders might pass over one another
and the motion of the cylinders may become much more complicated, and the restriction to a
line of the equally spaced cylinders must be relaxed for that case. Further work remains in the
investigation over a wide range of the parameters.

3.2. Motion of two lines of circular cylinders

Next, we calculate the motion of two lines of circular cylinders as shown in Fig. 16. A line
of cylinders exists in the upper region as well as in the lower region. First, we examine the
equilibrium position of the two lines of cylinders at Re � 28:23 and with L=D � 1 and Ds=D �
0:25: The initial positions of the upper and lower cylinders are set to be symmetrical with
respect to the centerline of the channel as shown in Fig. 16. The time variations of the y
positions of the cylinders A and B and the relative distance between the cylinders A and B in
the x-direction are shown in Figs. 17 and 18, respectively. It is seen that in the early stage

Fig. 16. The domain of computation for two lines of cylinders. The periodic boundary condition with a constant
pressure di�erence Dp is used at the inlet and outlet of the channel.
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Fig. 17. Lateral migration of two lines of cylinders at Re = 28.23 with Ds=D � 0:25 and f � 0:09817: (a) The
position of the center of the cylinder in y-direction; (b) the relative distance in x-direction of the cylinders A and B.

Fig. 18. Equilibrium arrangement of two lines of cylinders with Ds=D � 0:25 and L=D � 1:
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�xBc=D < 10� the cylinders gradually migrate to the centerline, while �xAc ÿ xBc�=L changes
little. However, as the vertical distance between two lines becomes smaller �xBc=D > 10�, the
upper and lower cylinders begin to interact with each other and oscillate in both the x- and y-
directions. Then, the oscillation decreases and the cylinders slowly reach their ®nal equilibrium
positions. In the ®nal equilibrium state, the two lines of cylinders are found to be staggered as
shown in Fig. 18. The equilibrium vertical position yBc=D of the cylinder B at various
Reynolds numbers is shown in Fig. 19. As the results of there being a single line of cylinders,
the equilibrium position moves toward the wall as the Reynolds number increases. Comparing
these results with those of a single line of cylinders at the same Reynolds number, we can see
that the cylinders migrate to almost the same vertical position in spite of another line existing
in the upper region. Fig. 20 shows the calculated results for the ratio of friction factors at
various Reynolds numbers. It is clear that the ratio of friction factors increases as the
Reynolds number increases, which is similar to the results of a single line of cylinders. In
Fig. 20 the friction factor of a single line with the same f (estimated from Figs. 9 and 12) is
also shown for comparison. It is seen that the friction factor of the two lines of cylinders is
smaller than that of the single line of cylinders. That is, when we let the cylinder±¯uid mixture
move through the channel, two lines of cylinders with a staggered arrangement ¯ow more
easily than a single line of cylinders.

Fig. 19. Equilibrium position of the center of the cylinder B, yBc, versus Reynolds number Re for two lines of
cylinders with Ds=D � 0:25 and f � 0:09817:

Fig. 20. The ratio of the friction factor f to that of ¯ow without cylinders �� 12=Re� versus Reynolds number Re for

two lines of cylinders with Ds=D � 0:25, and f � 0:09817: * indicates the result of two lines of cylinders and w
indicates the value of a single line of cylinders estimated from Figs. 9 and 12.
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4. Conclusions

We have applied the lattice Boltzmann method to simulations of the ¯ow between parallel
walls containing a single and two lines of neutrally buoyant cylinders. From the computations
over the parameter ranges of 12 < Re < 96, 0:25RDs=DR0:5, and 0:75RL=DR2, the
following results are obtained.

1. The SegreÂ ±Silberberg e�ect is found to occur for both a single and two lines of cylinders.
2. For two lines of cylinders with Ds=D � 0:25 and L=D � 1 the equilibrium positions of the

two lines are arranged to be staggered each other in the ¯ow direction.
3. As the Reynolds number increases, the equilibrium cylinder position moves to the wall and

the friction factor increases for both a single and two lines of cylinders.
4. As the ratio of the area occupied by the cylinder to the whole domain increases, the

equilibrium cylinder position moves to the wall and the friction factor linearly increases for
a single line of cylinders.

5. As the ratio of the cylinder diameter to the channel width increases, the equilibrium cylinder
position moves to the centerline and the friction factor decreases for a single line of
cylinders.

6. The friction factor of two lines of the cylinders is smaller than the estimated value of the
friction factor of a single line of the cylinders with the same conditions.
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Appendix A. Stress tensor

The relation between the stress tensor and the particle distribution function is obtained by
using the asymptotic analysis (Inamuro et al., 1997). In that work we ®rst put fi in the form of
series expansion of a modi®ed Knudsen number e 0 which is of the same order as the lattice
spacing Dx and is related to the relaxation time t:

fi � Ei

�
1� e 0f �1�i � e 0 2f �2�i � e 0 3f �3�i � � � �

�
for i � 1, 2, 3, . . . ,9: �A1�

Corresponding to Eq. (A1), the macroscopic variables are also expanded as follows:

ua � e 0u�1�a � e 0 2u�2�a � � � � , �A2�
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p � 1

3
� e 0p�1� � e 0 2p�2� � e 0 3p�3� � � � � , �A3�

where a � x, y: Then we obtain the ¯uid-dynamic type equation given by Eq. (50) of Inamuro
et al. (1997) from solvability conditions. From the ¯uid-dynamic type equation, we obtain the
stress tensor sab up to e 0 3 as follows:

sab � s�0�ab � e 0s�1�ab � e 0 2s�2�ab � e 0 3s�3�ab �O�e 0 4�

� ÿ
�
1

3
� e 0 2p�2� � e 0 3p�3�

�
dab � 1

3

�
tÿ 1

2

�
Dx
�

d
dxa

�
e 0u�1�b � e 0 2u�2�b

�
� d

dxb

�
e 0u�1�a � e 0 2u�2�a

��
�O�e 0 4�, �A4�

where dab is the Kronecker delta and a, b � x, y: It is noted that s�1�ab � 0: Also, the following
relation can be obtained from the asymptotic analysis:

ÿ
X9
i�1

fi�cia ÿ ua��cib ÿ ub�

� ÿ
�
1

3
� e 0 2p�2� � e 0 3p�3�

�
dab � 1

3
tDx

�
d

dxa

�
e 0u�1�b � e 0 2u�2�b

�
� d

dxb

�
�
e 0u�1�a � e 0 2u�2�a

��
�O�e 0 4�:

From Eqs. (A4) and (A5), we can obtain

sab � ÿ 1

2t
pdab ÿ

tÿ 1
2

t

X9
i�1

fi�cia ÿ ua��cib ÿ ub� �O�e 0 4�: �A6�

Appendix B. Boundary conditions

B.1. No-slip boundary condition at body

We ®rst consider the boundary condition of the cylinder±¯uid interface (Inamuro et al.,
1999). Let xc � �xc, yc� be the position of the center of the cylinder. The boundary nodes
representing the cylinder are made up of lattice grids surrounding the cylinder as shown in
Fig. 2. At the boundary node xw � �xw, yw�, let n be the normal vector along the line
connecting the node with the center of the cylinder, and t the unit tangent vector perpendicular
to n: The velocity vectors of the particles ci and the velocity of the boundary node uw are
written in terms of the orthonormal basis as

ci � cinn� citt, �B1�
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uw � uwnn� uwtt, �B2�

where uw� �usx ÿ O�ywÿ yc�, usy � O�xwÿxc�� with the translational velocity us � �usx,usy� and
the angular velocity O of the cylinder. On the boundary node, the distribution functions with
cin > 0 are unknown. The unknown distribution functions are determined by the no-slip
boundary condition (Inamuro et al., 1995). First, the unknown distribution functions are
assumed to be the equilibrium distribution functions given by Eq. (2) with a counter slip
velocity u

0
t as follows:

fi � Eir 0
�
1� 3

�
cinuwn � cit

ÿ
uwt � u 0t

��� 9

2

�
cinuwn � cit

ÿ
uwt � u 0t

��2ÿ3
2

h
u2

wn �
ÿ
uwt � u 0t

�2i�
for cin > 0, �B3�

where r 0 and u 0t are unknown parameters. The two unknown parameters are determined on the
condition that the ¯uid velocity on the boundary node is equal to uw: Moreover, the ¯uid
density at the boundary node rw is an unknown quantity and is calculated by Eq. (3). Hence,
we ®nally obtain three equations for the three unknowns. Assuming that u 0 2t is negligibly small,
we obtain the solutions

u 0t �

X
i�cin>0�

�
D1�cin ÿ uwn� ÿD2�cit ÿ uwt�

�
AiX

i�cin>0�

�
D2�cit ÿ uwt� ÿD1�cin ÿ uwn�

�
Bi

, �B4�

r 0 �
ÿ

X
i�cinR0�

�cin ÿ uwn�fiX
i�cin>0�

�cin ÿ uwn�
�
Ai � Biu

0
t

� , �B5�

rw �
X

i�cin>0�
r 0
�
Ai � Biu

0
t

�� X
i�cinR0�

fi, �B6�

where

Ai � Ei

�
1� 3�cinuwn � cituwt� � 9

2
�cinuwn � cituwt�2ÿ3

2

ÿ
u2

wn � u2
wt

��
, �B7�

Bi � Ei

�
3cit � 9cit�cinuwn � cituwt� ÿ 3uwt

�
, �B8�

D1 �
X

i�cinR0�
�cit ÿ uwt�fi, �B9�
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D2 �
X

i�cinR0�
�cin ÿ uwn�fi: �B10�

Substituting Eqs. (B4) and (B5) into Eq. (B3), all the unknown distribution functions on the
boundary node are determined.
The same condition is used at the boundary nodes of the channel walls.

B.2. Periodic boundary condition at inlet and outlet

A periodic boundary condition with a pressure di�erence Dp is used on the inlet and outlet
(Inamuro et al., 1999). Hereafter, the subscript 'in' and 'out' represent quantities at the inlet
and outlet, respectively. At the inlet, the unknown distribution functions are f2, f6, and f9:
Taking account of the form of the equilibrium distribution functions given by Eq. (2) and
neglecting the second- and higher-order terms of Knudsen number compared with the terms of
O�1�, we assume that the unknown distribution functions at the inlet can be written by adding
constant values C and C/4 to the corresponding known distribution function at the outlet:

f2jin � f2jout � C, �B11�

fijin � fijout �
1

4
C for i � 6, 9: �B12�

Similarly, at the outlet the unknown distribution functions f4, f7, and f8 are assumed to be
written by subtracting the constant values from the corresponding known distribution function
at the inlet:

f4jout � f4jin ÿ C, �B13�

fijout � fijin ÿ
1

4
C for i � 7, 8: �B14�

Then the constant value C is determined so that the pressure di�erence between the inlet and
outlet is equal to Dp: That is, using Eqs. (3) and (5), we get

C � Dpÿ 1

3

ÿ
f1jin ÿ f1jout � f3jin ÿ f3jout � f5jin ÿ f5jout

�
: �B15�

Substituting Eq. (B15) into Eqs. (B11)±(B14), all the unknown distribution functions at the
inlet and outlet are determined for the given Dp:
In addition, the unknown distribution functions at four corners of the inlet and outlet are

calculated by combining the above-mentioned periodic and no-slip boundary conditions as
follows. For example, at the lower corners of the inlet and outlet, we ®rst express f2jin, f9jin,
f4jout, and f8jout by using Eqs. (B11)±(B14) with a constant value C0: Then, applying the no-slip
boundary conditions at the corners and specifying the pressure di�erence between the inlet and
outlet, we obtain seven equations for seven unknowns. The solution for C0 is given by
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C0 � Dpÿ 1

3

�
f1jin ÿ f1jout � 2

ÿ
f5jin ÿ f5jout

��
: �B16�

The solutions of other unknowns can also be obtained by using Eqs. (B4)±(B6). Thus, the
unknown distribution functions are determined by Eqs. (B3) and (B11)±(B14). The same
method is used at the upper corners of the inlet and outlet.
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